Functional decomposition of the human ERG based on the discrete wavelet transform.
نویسندگان
چکیده
The morphology of the electroretinogram (ERG) can be altered as a result of normal and pathological processes of the retina. However, given that the ERG is almost solely assessed in terms of its amplitude and timing, defining the shape of the ERG waveform so that subtle, physiologically driven, morphological changes can be systematically and reproducibly detected remains a challenging problem. We examined if the discrete wavelet transform (DWT) could meet this challenge. Normal human photopic ERGs evoked to a broad range of luminance intensities (to yield waveforms of various shapes, amplitudes, and timings) were analyzed using DWT descriptors of the ERG. Luminance-response curves that were generated using the various DWT descriptors revealed distinct (p < 0.05) luminance-dependence patterns, indicating that the stimulus luminance differently modulates the various time-frequency components of the ERG and thus its morphology. The latter represents the first attempt to study the luminance-dependence of ERG descriptors obtained with the DWT. Analyses of ERGs obtained from patients affected with ON or OFF retinal pathway anomalies were also presented. We show here for the first time that distinct time-frequency descriptors can be specifically associated to the function of the ON and OFF cone pathway. Therefore, in this study, the DWT revealed reproducible, physiologically meaningful and diagnostically relevant descriptors of the ERG over a wide range of signal amplitudes and morphologies. The DWT analysis thus represents a valuable addition to the electrophysiologist's armamentarium that will improve the quantification and interpretation of normal and pathological ERG responses.
منابع مشابه
Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملFixing of Cycle Slips in Dual-Frequency GPS Phase Observables using Discrete Wavelet Transforms
The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced a method based on different combinations of GPS data together with Kalman filter to solve the problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet transforms. For...
متن کاملEffect of the frequency content of earthquake excitation on damage detection in steel frames
In this study, the effect of earthquake frequency content and noise effects on damage detection has been investigated. For this purpose, the damage was defined as nonlinear behavior of beams and columns, and several ground motion records were scaled so that some elements yield under the applied excitation. Then the acceleration response data of each floor obtained using the nonlinear dynamic an...
متن کاملFault Strike Detection Using Satellite Gravity Data Decomposition by Discrete Wavelets: A Case Study from Iran
Estimating the gravity anomaly causative bodies boundary can facilitate the gravity field interpretation. In this paper, 2D discrete wavelet transform (DWT) is employed as a method to delineate the boundary of the gravity anomaly sources. Hence, the GRACE’ satellite gravity data is decomposed using DWT. DWT decomposites a single approximation coefficients into four distinct components: the appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 15 16 شماره
صفحات -
تاریخ انتشار 2015